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An investigation of the local receptivity of a Blasius boundary layer to a harmonic
vortical disturbance is presented as a step towards understanding boundary-layer
receptivity to free-stream turbulence. Although there has been solid experimental
verification of the linear theory describing acoustic receptivity of boundary layers,
this was the first experimental verification of the mechanism behind local receptivity
to a convected disturbance. The harmonic wake from a vibrating ribbon positioned
upstream of a flat plate provided the free-stream disturbance. Two-dimensional rough-
ness elements on the surface of the plate acted as a local receptivity site. Hot-wire
measurements in the boundary layer downstream of the roughness confirmed the gen-
eration of Tollmien–Schlichting (TS) instability waves by an outer-layer interaction
between the long-wavelength convected disturbance and the short-scale mean-flow
distortion due to the roughness. The characteristics of the instability waves were
carefully measured to ensure that their behaviour was correctly modelled by linear
stability theory. This theory was then used to determine the immeasurably small
initial wave amplitudes resulting from the receptivity process, from wave amplitudes
measured downstream. Tests were performed to determine the range of validity of
the linear assumptions made in current receptivity theories. Experimental data ob-
tained in the linear regime were then compared to theoretical results of other authors
by expressing the experimental data in the form of an efficiency function which is
independent of the free-stream amplitude, roughness height and roughness geometry.
Reasonable agreement between the experimental and theoretical efficiency functions
was obtained over a range of frequencies and Reynolds numbers.

1. Introduction
The receptivity of a laminar boundary layer to a particular type of free-stream

disturbance is a measure of the extent to which that disturbance excites instabilities in
the boundary layer. Once excited, Tollmien–Schlichting (TS) instability waves grow in
accordance with linear stability theory until nonlinear and three-dimensional effects
contribute to a breakdown of the flow into turbulence. This path to transition has
received a lot of attention in the years since the existence of the TS instability was ex-
perimentally confirmed by Schubauer & Skramstad (1948). TS waves are eigenvalues
of the Orr–Sommerfeld equation – a fourth-order linear ordinary differential equation
derived from the linearized Navier–Stokes equations for parallel flows. Solutions of
this equation describe the stability characteristics of the boundary layer. Current
transition prediction criteria are based on these solutions and assume that transition
will occur when the TS waves have been amplified by an empirically determined
N-factor. These criteria are limited because they are independent of the free-stream



292 A. J. Dietz

disturbance environment. Measurements have clearly demonstrated that boundary-
layer transition is dependent on the amplitude, frequency and type of disturbances
present in the free stream. The goal of receptivity analyses is to improve transition
prediction methods by extending transition criteria to include the characteristics of
the free-stream disturbance environment.

Early receptivity studies such as that by Gaster (1965) were based on the Orr–
Sommerfeld equation with local forcing introduced at the boundary. Locally intro-
duced disturbances have energy over a broad spectrum of wavenumbers and are able
to couple directly with the boundary-layer instability waves (Kerschen 1989). This
type of analysis is relevant to boundary-layer excitation by surface-mounted vibrat-
ing ribbons or by unsteady surface suction/blowing. However, free-stream acoustic
disturbances, which propagate at the speed of sound, and vortical disturbances, which
are convected with the free stream, cannot couple directly with TS waves, which
typically propagate at a third of the free-stream velocity. For a given frequency the
three will have substantially different wavenumbers and the direct forcing required in
the Orr–Sommerfeld solution cannot occur. The central importance of a wavelength
conversion mechanism to the natural receptivity problem was recognized by Reshotko
(1976).

Early experiments and theoretical analyses concentrated on receptivity mechanisms
occurring in the leading-edge region of flat-plate boundary layers. However, for the
Blasius boundary layer, waves excited at the leading edge will undergo a sustained
period of decay before reaching the lower branch of the neutral stability curve
(branch I) where they begin to grow. Numerical calculations by Murdock (1980)
and theoretical analyses by Goldstein (1983) and Goldstein, Sockol & Sanz (1983)
predicted TS amplitudes at the branch I location of a thin flat plate to be several
orders of magnitude less than the free-stream forcing amplitude. Yet Leehey &
Shapiro (1980) measured TS waves at the branch I location of their flat plate which
were of the same order as the acoustic forcing. In another important experiment,
Aizin & Polyakov (1979) demonstrated a separate local receptivity mechanism. They
measured an increase in the acoustic receptivity of a flat-plate boundary layer when
they introduced a thin surface roughness element in the vicinity of branch I. The
receptivity increased linearly with acoustic forcing and with roughness height and
was dependent on the width of the roughness strip. A detailed account of this
experiment is given in Nishioka & Morkovin (1986).

Goldstein (1985) and independently Ruban (1985) provided theoretical analyses
of this local receptivity mechanism. Using triple-deck theory they showed that the
local short-scale mean flow distortion due to a small roughness element or a sudden
change in surface curvature could produce a strong coupling between the long-
wavelength acoustic disturbances and the short-wavelength TS waves. Wavelength
conversion results when temporal modulation of the mean-flow distortion, by the
acoustic excitation, generates frequency/wavelength combinations which match that
of the TS wave (Kerschen 1990). Using this theory, Goldstein was able to obtain
good quantitative agreement with the experimental results of Aizin & Polyakov
(1979), and Goldstein & Hultgren (1987) were able to show that the site for the
increased receptivity in Leehey & Shapiro’s experiment was the junction of their
leading edge and flat plate. Goldstein’s localized acoustic receptivity analysis for
small surface variations was extended into the nonlinear regime of large roughness
elements by Bodonyi et al. (1989), who solved the nonlinear triple-deck equations
for the steady flow numerically. They found that the receptivity was linear until
the roughness height was of the order of the viscous lower deck of the triple-
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deck structure. Larger roughness elements caused a marked increase in receptiv-
ity.

An alternative to the asymptotic analyses of localized receptivity was developed in-
dependently by Zavol’skii, Reutov & Rybushkina (1983), Choudhari & Streett (1992)
and Crouch (1992). For small surface variations, locally parallel flow is assumed to
apply and the unsteady flow is expressed as a perturbation of the Orr–Sommerfeld
equation rather than the triple-deck equations. At first order, the free-stream distur-
bance and the mean-flow distortion exist independently, but at second order, the two
interact to produce a wave with the frequency of the free-stream disturbance and a
wavenumber given by the sum of the free stream and surface wavenumbers. Thus
the analysis includes the wavelength conversion mechanism described by Goldstein
and Ruban. Although the Orr–Sommerfeld assumption of locally parallel flow at
finite Reynolds numbers is not rigorous, this technique is not limited to the Reynolds
number and frequency scaling of the lower-branch asymptotic analyses and so the
effects of variations in Reynolds number and frequency may be investigated. In this
formulation, the receptivity is given by

u′ts = u′fsF(αts − αfs)Λ(F, R), (1.1)

where u′ts is the amplitude of the TS wave, u′fs is the amplitude of the free-stream
disturbance and F(αts − αfs) is the spatial Fourier transform of the surface geometry
evaluated at a wavenumber equal to the difference between the TS wavenumber, αts,
and the wavenumber of the free-stream disturbance, αfs. This important expression
embodies the linear assumptions inherent in the theory and distils the receptivity
mechanism into an efficiency function Λ(F, R) which is independent of the surface
geometry. The efficiency function proves to be a good vehicle for comparing results
of different theoretical calculations and experimental measurements.

The body of these Orr–Sommerfeld-based finite Reynolds number studies is exten-
sive. Results have been obtained for acoustic receptivity at localized and distributed
roughness and at short-scale variations in wall suction, porosity and temperature.
Hill (1995) obtained a comparable result for local acoustic receptivity by solving
the adjoint problem. Detailed reviews are given in Choudhari & Streett (1994) and
Crouch (1994a). A comparison between finite Reynolds number results and results of
calculations using the parabolized stability equations made by Crouch & Bertolotti
(1992) for acoustic receptivity and by Lin, Stuckert & Herbert (1995) for vorti-
cal receptivity, showed the two methods to be in agreement. A further comparison
between the results of finite Reynolds number calculations and those of a direct
numerical simulation of acoustic receptivity at localized surface suction made by
Crouch & Spalart (1995) also showed good agreement. These comparisons suggest
the parallel-flow assumptions made in the Orr–Sommerfeld formulation were valid
for the cases considered. Comparisons with results of the asymptotic calculations
of Goldstein made by Choudhari & Streett (1992) and Crouch (1992) showed that
both calculations followed similar trends with frequency and Reynolds number. The
finite Reynolds number results would be expected to approach the asymptotic re-
sults in the branch I region at high Reynolds numbers and this appeared to be the
case.

A number of experiments on local acoustic receptivity have followed that of Aizin
& Polyakov (1979). Wlezien, Parekh & Island (1990) measured the acoustic receptivity
at a porous strip. They used hot-wire data from a number of closely spaced vertical
profiles measured near the second branch of the neutral stability curve to separate the
short-wavelength TS waves from the long-wavelength acoustic waves. A high aspect
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ratio leading edge was used to reduce any contribution from leading-edge receptivity
and a linear increase in receptivity with acoustic forcing was observed. Saric, Hoos
& Radeztsky (1991) investigated the linearity of acoustic receptivity with roughness
height. Their measurements confirmed the finding of Bodonyi et al. (1989) that the
onset of nonlinearity occurs when the roughness exceeds the viscous lower deck.
Wiegel & Wlezien (1993) measured acoustic receptivity at a wavy wall simulated by
an array of surface roughness elements. They showed that the receptivity at distributed
roughness was an order of magnitude greater than receptivity at local roughness and
that there was strong tuning about the resonant condition when the TS wavenumber
matched the wall wavenumber. Their results agreed well with those of finite Reynolds
number calculations by Choudhari & Streett (1992). Zhou, Liu & Blackwelder (1994)
measured acoustic receptivity to two- and three-dimensional roughness elements and
demonstrated the dependence of the local receptivity on the spatial Fourier transform
of the surface roughness as well as confirming other aspects of the acoustic receptivity
theory. Breuer et al. (1996) investigated receptivity to broad-band acoustic forcing at
surface roughness and demonstrated a linear variation with the height and number
of roughness elements.

The theory of receptivity to vortical disturbances is as well developed as that for
acoustic disturbances. One of the first analyses of the response of a boundary layer to
convected vorticity was carried out by Rogler & Reshotko (1975). They modelled the
free-stream disturbance as a convected array of counter-rotating harmonic vortices.
It was a forced problem because without a receptivity site there was no mechanism
for wavelength conversion. Results of their calculations showed that the disturbances
were highly damped near the wall with most of the energy confined to the outer part
of the layer. This is quite different from the disturbance profile associated with an
acoustic disturbance which has the profile of a Stokes shear wave with significant
energy close to the wall.

Kerschen (1989) used asymptotic methods to analyse the local receptivity to vortical
disturbances. He identified a vortical receptivity mechanism quite different from that
of acoustic receptivity. While acoustic receptivity arises from an interaction between
the Stokes wave and the mean-flow distortion in the viscous lower deck, vortical
receptivity arises from an interaction between the vortical disturbance and the short-
scale mean-flow distortion in the upper deck. The efficiency function Λ(F, R) calculated
by Kerschen (1990) for vortical receptivity was an order of magnitude less than that
calculated by Goldstein (1985) for acoustic receptivity. (The ε factor in Kerschen’s
receptivity expression is included in his vortical receptivity efficiency function in this
comparison.) Kerschen (1991) included a second-order effect in his calculation of
vortical receptivity, due to pressure fluctuations in the base flow which bring the
acoustic receptivity mechanism into play. This effect causes the receptivity to vary
with the convection speed of the vortices, reaching a minimum when the convection
speed is 0.94 times the free-stream velocity, and approaching the value for an acoustic
wave as the speed is increased.

Zavol’skii et al. (1984) used the Orr–Sommerfeld-based finite Reynolds number
technique to calculate the receptivity of a flat-plate boundary layer over a small-
amplitude periodically wavy wall to vortical disturbances. The vortical disturbance
modelled was the wake from a vibrating ribbon convected above the boundary layer.
A Gaussian profile was assumed for the unsteady stream function describing the
wake. They noted that the most effective TS wave excitation occurs at the resonance
condition αwall = αts − αfs, where αwall is the wavenumber of the surface roughness.
They also noted that the boundary layer is most sensitive to distributed roughness at
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the branch I location as waves excited at this location experience the maximum subse-
quent growth. Choudhari (1994) presented a parametric study of the local receptivity
of a boundary layer to convected vorticity. Following Zavol’skii et al., Choudhari
assumed that the free-stream disturbance was a harmonic wake with a Gaussian
profile. Crouch (1994a, b) analysed vortical receptivity at local and distributed surface
suction and roughness. He adopted the convected array of vortices studied by Rogler
& Reshotko (1975) as a representative free-stream disturbance. His calculations were
referenced to the free-stream vortex strength and the resulting receptivity coefficient
was dependent on the position of the vortices relative to the plate surface. Choudhari
(1996) analysed the response of a boundary layer to two- and three-dimensional gusts
and calculated the local receptivity to these gusts at two-dimensional roughness.

Despite the strong theoretical backing for receptivity to convected disturbances,
there has been little experimental verification for this class of disturbance. The
experiment of Kachanov, Kozlov & Levchenko (1978) concentrated on the leading
edge, and with no receptivity sites aft of this region, no TS wave generation was
observed downstream of the leading edge. In a later experiment, Parekh, Pulvin &
Wlezien (1991) investigated the receptivity to vortical disturbances at a backward-
facing step. Their disturbance was a non-compact gust generated by vibrating an
array of ribbons upstream of the plate leading edge. No vortical receptivity was
detected in this experiment. It was suggested that this may have been due to the
convection speed of the wake which was estimated to be slightly less than the free-
stream velocity. Kerschen (1991) calculated reduced receptivity for such a convection
speed. In addition the spatial Fourier transform of a step is not as great as a
roughness element of resonant width. In his analysis of vortical receptivity, Choudhari
(1994) asserted that a properly designed experiment, using a convected wake over
distributed roughness, would produce measurable TS waves and he quantified many
of the parameters involved in designing such an experiment.

An experimental investigation of localized boundary-layer receptivity to a convected
disturbance is reported in this paper. The experimental set-up and some preliminary
results were originally reported in Dietz (1996). The wake from a vibrating ribbon
was chosen as the free-stream disturbance in line with Choudhari’s recommendations.
The experiment was designed with attention to the advice of Nishioka & Morkovin
(1986) and Saric (1990) regarding receptivity experiments. In particular, care was
taken to ensure that a Blasius mean flow with linear stability characteristics was
established on the flat plate, and that all uncontrolled disturbances with the poten-
tial to excite the boundary layer were minimized. The experimental arrangement is
outlined in § 2. The results reported in § 3 include measurements of the mean flow,
the free-stream disturbance and the boundary-layer instability waves. These mea-
surements confirmed that linear stability theory correctly modelled the experimental
instability waves, and that this theory could be used to determine the immeasurably
small initial wave amplitudes from wave amplitudes measured downstream. A series
of tests establishing the range of validity of the linear assumptions in (1.1) are also
reported in § 3. This equation was then used to determine the receptivity efficiency
function over a range of excitation frequencies and roughness Reynolds numbers
from measurements of the TS wave amplitude. In § 4, the trends evident in the
experimental data are shown to compare favourably with those of the theory. Exper-
imental verification of the mechanism behind local receptivity to convected vortical
disturbances is a step towards understanding local receptivity to free-stream turbu-
lence and towards developing a transition criterion based on free-stream disturbance
levels.
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Figure 1. Experimental set-up showing the excitation of two-dimensional TS waves by the inter-
action between a long-wavelength harmonic disturbance convected in the wake from a vibrating
ribbon and a short-scale mean-flow distortion due to surface roughness. The waves are measured
downstream using a traverse-mounted hot wire.

2. Experimental arrangement and measurement technique
The experiment was carried out in a low-speed indraft wind tunnel in the Fluid

Mechanics Laboratory at the NASA Ames Research Center. A schematic of the
experimental apparatus is given in figure 1. The tunnel has a 0.4 m square × 2.6 m
long test section and is powered by a centrifugal blower. A settling chamber, with
honeycomb and eight seamless fine-mesh screens followed by a 10:1 contraction,
results in a high-quality test section flow with non-uniformity below 0.5 %, angularity
below 0.3◦ and a turbulence intensity in the range 3 Hz to 10 kHz of 0.07 %.

Measurements were made on a highly polished flat plate with a 58:1 elliptic
leading edge. The high aspect ratio leading edge was chosen to minimize leading-edge
effects. The plate was mounted horizontally near the centre of the test section on
vibration-isolation supports. Foam seals were fitted along each side of the plate to
prevent leakage between the upper and lower surfaces. A 12.7 mm wide × 51 µm
thick ribbon mounted 0.58 m ahead of the plate leading edge was used to introduce
the convected disturbance. The ribbon was stretched between two shafts mounted in
sealed enclosures on either side of the test section. A single electromagnetic shaker
was used to drive the shafts. The ribbon was tensioned until its first natural frequency
was well above the desired forcing frequency so that a two-dimensional wake would
result without any contributions from higher ribbon vibration modes. Roughness
elements were constructed from strips of 50 ± 2 µm thick polyester tape, 25.4 mm
wide.

Velocity measurements were made using two single-wire Dantec 5 µm diameter
platinum-plated tungsten hot-wire probes. Only single-wire probes were used in this
investigation so all reported velocity measurements are of the streamwise velocity. The
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primary probe was supported by a three-axis traverse housed in a sealed enclosure
above the test section. A streamlined sting passed from the traverse enclosure, through
a sealed slot, into the test section where the hot wire was mounted at the tip of a
0.12 m long extension tube to ensure it was free from any pressure-gradient effects
associated with the sting. An electrical contact at the base of the sting was used to
locate the plate at the start of each boundary-layer profile measurement. Care was
taken to minimize any vortex shedding from the sting or the slot which could corrupt
the measurements. A second hot wire was used as a reference for phase measurements.
It was mounted on a fixed sting at the streamwise location of branch I. The wire
was offset 0.05 m in the spanwise direction from the tunnel centreline and positioned
just above the stationary ribbon’s wake. Free-stream pressure was measured with a
pitot tube mounted on the traverse sting 30 mm above the primary hot wire. Free-
stream temperature was measured with a platinum-resistance thin film detector also
mounted on the traverse sting. Atmospheric pressure was regularly updated from a
digital barometer.

The hot wires were always calibrated at the same reference positions against free-
stream velocity determined from the pitot tube. Temperature sensitivity was reduced
by assuming the following function based on the rate of heat transfer from the wire:

U = f

(
Ew

(Tw − Tfs)1/2

)
, (2.1)

where U is the streamwise velocity at the wire, Ew is the wire voltage, Tfs is the
free-stream temperature and Tw is the wire temperature calculated assuming Tw =
(Rw − 1)/α0 +T0, where Rw is the wire overheat ratio, set at 1.8 for these experiments,
and α0 = 0.0036 is the temperature coefficient of resistivity of the wire at a reference
temperature T0 of 293 K. An eight-point fourth-order polynomial fit was used with
calibration velocities distributed to give more points in the low-velocity region where
the calibration curve had the greatest variation. The calibration’s 95 % confidence
limits were typically ± 0.05 m s−1 which is 0.3 % of the free-stream velocity. The
wires were calibrated before every measurement sequence and possible drift in the
calibration was checked on completion of the sequence. If the difference between the
velocity from the hot wire and that from the pitot tube was greater than 3 % the
calibration and measurement sequence were repeated. However, the drift was typically
less than 1 % of the free-stream velocity. After each test, the measured profiles were
inspected using a graphical interface. During this inspection, near-wall data points
obviously affected by heat conduction to the wall were discarded. The wall location
was then determined from a linear extrapolation of the near-wall velocities.

All analogue signals were acquired simultaneously by a high-speed 15 bit Tustin
A/D converter and then transferred to a MicroVAX II computer. Ten blocks of
5000 samples acquired at 2500 Hz were recorded at each point. The signal from the
traverse hot wire was low-pass filtered at 10 kHz and recorded on one channel for
the mean velocity, and further high-pass filtered at 3 Hz and recorded on a separate
channel for the velocity fluctuations. The high-pass filtering was required to remove
low-frequency unsteadiness, associated with a suspected separation in the diffuser,
from the velocity fluctuation measurements. The r.m.s. amplitude of the velocity
fluctuations was estimated from the product of the a.c. coupled r.m.s. voltage and the
local slope of the d.c. calibration curve. Spectral measurements were performed with
a HP3665A Dynamic Signal Analyzer. The component of the velocity fluctuations at
the ribbon forcing frequency was obtained from a power spectrum of the hot-wire
signal. The phase of this component was obtained from a cross-spectrum between the
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Figure 2. Turbulence intensity spectrum measured in the boundary layer (shown in bold) and the
free stream. x = 0.71 m, R = 910.

traverse hot-wire signal and the reference hot-wire signal. These measurements were
recorded after 12 ensemble averages. A flat-top window with a bandwidth of 3.82 Hz
was used.

As the TS waves at branch I were too small to be accurately measured, the waves
were measured at a downstream location where the exponential growth of the waves
had increased their amplitudes to measurable levels. The parameters of the experiment
were optimized for resonance with roughness elements of a certain width positioned
at branch I, and for maximum amplification from this site to the downstream
measurement position. The downstream position was fixed at 0.71 m from the leading
edge as sidewall contamination was unacceptable aft of this position. The theory
reported in § 1 suggested that the most effective TS wave excitation would occur at
the resonance condition, αwall = αts−αfs. For standard 25.4 mm tape, these constraints

resulted in an optimum frequency parameter of F = 2πfν/U∞2 × 106 = 50 where f
is the ribbon forcing frequency, ν is the dynamic viscosity and U∞ is the free-stream
velocity. The optimum branch I Reynolds number was RI = (U∞x/ν)1/2 = 613, where
x is the streamwise distance from the virtual leading edge (§ 3.1). These parameters
give U∞ = 17 m s−1 and f = 157 Hz at a reference temperature of 288 K and a
reference dynamic viscosity of 1.455 × 10−5 m2 s−1. The experiment was controlled
to maintain constant R and F by adjusting the free-stream velocity and the ribbon
forcing frequency as the flow temperature and the atmospheric pressure varied from
the reference values.

3. Results
3.1. Base flow

Receptivity experiments are best realized by minimizing all uncontrolled background
disturbances. A controlled disturbance may then be introduced and its effect on the
boundary layer measured. The tunnel used for this experiment has a satisfactory
turbulence intensity (below 0.1 %). This measure is a combination of free stream
turbulence and flow unsteadiness due to the blower. The tunnel has a large blower
operating well below its design point. This proved to be advantageous as shown
in the streamwise velocity spectrum given in figure 2. The fan speed was less than
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Figure 3. Pressure coefficient measured at the following heights above the plate surface:
y = 14 mm (◦), 20 mm (4), 26 mm (�), 31 mm (O), 37 mm (+), 43 mm (/), 48 mm (×), 54 mm (.).

10 Hz which with eight blades resulted in a blade passing frequency which was less
than 80 Hz. With the fan unsteadiness contained at low frequencies, the disturbance
levels in the frequency range of interest, 110–220 Hz, were of the same order as the
electrical noise in the signal. The spanwise variation of the streamwise velocity was
also measured to ensure that results would not be corrupted by three-dimensionality
in the base flow. The fluctuation levels in the boundary layer remained below 0.1 %
of the free-stream velocity in the region ± 2.5 cm of the centreline until sidewall
contamination became significant at x = 0.71 m.

A zero pressure gradient (Blasius) boundary layer was established on the upper
surface of the flat plate by setting the plate at a slight angle of attack to counter
the effects of the growing boundary layers on the plate surface and the tunnel walls.
The pressure gradient in the leading-edge region was further modified by adjusting
a flexible ceiling in the test section to minimize the adverse pressure gradient at the
leading-edge/plate juncture, which was just upstream of branch I. The final pressure
gradient obtained after an iterative adjustment procedure is shown in figure 3 where
the pressure coefficient is plotted against streamwise distance at a number of heights
above the plate surface. The coefficient was obtained by dividing the differential
pressure between the traverse static port and a wall static port located well upstream
of the leading edge, by the dynamic pressure measured at a fixed reference location.
Measurements within 10 mm of the wall were affected by a wall proximity error and
are not reported. The variation in pressure coefficient was within ± 0.2 % for R > 520
and was less than ± 0.1 % for R > 600. The leading-edge region, R < 520, had a
strong favourable pressure gradient which was considered to be beneficial as it served
to dampen any instabilities excited at the leading edge. After each adjustment of the
pressure gradient, a flap at the rear of the plate was used to move the stagnation
point back to the tip of the leading edge. The location of the stagnation point was
inferred from surface static-pressure measurements made on either side of the plate,
25 mm from the leading edge, using miniature static-pressure probes taped to the
plate surface.

The Blasius character of the boundary layer was confirmed from profiles of the
mean streamwise velocity recorded at a number of x-stations. The shape factor
calculated from these profiles was consistently within 1 % of the Blasius value of
2.59. A virtual origin for the boundary layer was also calculated from these profiles:
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Figure 4. Profiles of the mean streamwise velocity in the boundary layer at 12 stations from R = 630
to R = 900, plotted against the boundary-layer coordinate η = y/(2νx/U∞)1/2 and compared with
the theoretical Blasius profile.

xvo = δ∗2U∞/(1.728ν). The virtual origin for this experiment was estimated to be
0.025 m aft of the physical leading edge. All x-data reported in this paper are
referenced to this virtual origin. A comparison of the mean-velocity profiles with
the theoretical Blasius profile is given in figure 4 using the non-dimensional height
η = y/(2νx/U∞)1/2. The measurements, recorded at 12 stations from R = 630 to
R = 900, confirm the self-similarity of the profiles and the accuracy of the virtual
origin.

3.2. Convected disturbance

Detailed measurements were made of the harmonic disturbance convected with the
wake from the ribbon to establish the input to the receptivity process. The ribbon
was set well ahead of the plate leading edge to ensure a small wake deficit and hence
minimize the nonlinear effects calculated by Kerschen (1991), whose results suggested
the receptivity would decrease as the disturbance convection speed decreased, reaching
a minimum at 0.94U∞. Plots of the mean streamwise velocity, U, and of the r.m.s.
velocity fluctuations, u′, in the boundary layer and the ribbon wake with no ribbon
vibration are given in figure 5. The velocity deficit in the wake was less than 2 % of
the free-stream velocity which indicates that the disturbance convection speed was
close to the free-stream value. The wake’s Gaussian mean-flow deficit is located well
outside of the boundary layer and the turbulence intensity, which has a maximum
of 0.45 % in the wake, decays to negligible values before the edge of the boundary
layer. A plot of the component of the velocity fluctuations at the ribbon forcing
frequency of 157 Hz is also included in the figure. With no ribbon vibration, this
component remains below 0.03 % in the wake and there is no detectable excitation
of the boundary layer at this frequency. These measurements suggest the turbulence
in the wake is sufficiently removed from the boundary layer and will not affect the
receptivity measurements.

Profiles of the wake with the ribbon vibrating are given in figure 6. Both narrow-
band (157 Hz) and broad-band (3–10 kHz) fluctuations are included in the figure. The
narrow-band fluctuations at the forcing frequency dominate the profile and extend
well beyond the turbulent region of the wake. The presence of the plate causes
a plateau in the fluctuation level at the boundary-layer edge, where there is little
change in the fluctuation level from η = 6 to 12. Inside the boundary layer the
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Figure 5. Profile of the streamwise velocity in the boundary layer and the wake behind the
stationary ribbon measured at R = 633. Broad-band r.m.s. fluctuations u′/U∞ from 3 Hz to 10 kHz
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Figure 6. Profiles of the amplitude (a) and phase (b) of the streamwise velocity fluctuations
measured in the boundary layer and the wake behind the vibrating ribbon. R = 633, F = 50.
Broad-band r.m.s. fluctuations u′/U∞ from 3 Hz to 10 kHz (�), component of u′/U∞ at ribbon
forcing frequency of 157 Hz (◦).

fluctuations rapidly decay to zero at the wall. A plot of the phase of the fluctuations
is also given in figure 6 showing a 180◦ phase change in the centre of the wake and
rapid variation in the boundary-layer region. The amplitude and phase profiles are
similar to those measured by Wygnanski, Champagne & Marasli (1986) in their study
of instabilities in small-deficit turbulent wakes. Wygnanski et al. also calculated a
linearized Navier–Stokes solution which was in good agreement with the results of
their measurements.
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Figure 7. Streamwise velocity spectra recorded in the boundary layer and the wake behind the
vibrating ribbon. R = 633, F = 50.

A plot of streamwise velocity spectra recorded at points through the boundary
layer and the vibrating ribbon wake is given in figure 7. The broad-band turbulence
in the wake is centred at η = 25 as expected from the profile of the wake from the
stationary ribbon shown in figure 5. While the turbulent fluctuations are localized
in the wake well above the boundary layer, fluctuations at the forcing frequency
extend into the potential flow region outside the wake and excite the boundary layer.
Some energy is present in the second and third harmonics of the forcing frequency
but tensioning the ribbon has reduced these harmonics to acceptable levels. These
measurements illustrate that the wake from a vibrating ribbon is an effective way to
excite a boundary layer with single-frequency convected disturbances.

The disturbance profile inside the boundary layer is shown in figure 8 where the
real and imaginary parts of the amplitude of the streamwise velocity fluctuations
are plotted. As predicted by Rogler & Reshotko (1975), most of the disturbance
energy is confined to the outer part of the boundary layer and the fluctuations are
rapidly damped towards the wall. Profiles recorded at different streamwise locations
(not plotted here) show that the penetration of the disturbance into the boundary
layer decreases as R increases. A similar trend was found by Choudhari (1996) in
his calculations of the response of a boundary layer to a two-dimensional gust.
Choudhari, and also Davis (1997), calculated a numerical solution of the linearized
unsteady boundary-layer equations with streamwise forcing as the upper boundary
condition. Their results are in agreement and as shown in figure 8, closely match the
measured disturbance profile. The agreement between the measured profile and the
calculated profile is important as this profile is the input into the receptivity process,
and the accuracy of any receptivity calculation will depend on the accuracy of the
calculated boundary-layer disturbance profile.

The degree to which these calculations model the response of the boundary layer
suggests that the boundary-layer response is primarily determined by the streamwise
forcing at its edge. This hypothesis was tested experimentally by varying the wake
height while keeping the wake amplitude at the boundary-layer edge constant. The
result is shown in figure 9(a). Although the wake profiles are dissimilar, with the
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Figure 9. Effect of wake height on the disturbance profile in the boundary layer. (a) Ribbon was
moved from η = 45 (—) to η = 25 (−−). Ribbon vibration amplitude was set to keep the fluctuation
amplitude at the edge of the boundary layer constant at u′fs/U∞ = 0.3 %. (b) Ribbon was moved
from η = 63 to η = 25. Ribbon vibration amplitude was kept constant. Dashed line is the lower
profile scaled by eαfs(y1−y2) where αfs is the wavenumber of the wake disturbance and (y1− y2) is the
difference in wake heights.

upper wake at a higher level of forcing, the disturbance profile in the boundary layer
is the same. The fluctuation amplitude at the edge of the boundary layer, u′fs, therefore
seems to be a good reference measure of the strength of the free stream forcing. This
reference location is also attractive in as much as the plateau in fluctuation levels
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thick, spaced 50.8 mm apart about RI = 613.

at the boundary-layer edge reduces the sensitivity of measurements to small height
differences (figure 6).

It can be shown that the fluctuations in an unbounded free stream outside the vis-
cous wake region scale exponentially with the product of the streamwise wavenumber
and the distance from the wake centreline. Assume that in the irrotational flow
outside the viscous wake, streamwise fluctuations satisfy a stream function of the
form Ψ = f(y) ei(αfsx−ωt). Then ∇2Ψ = 0 ⇒ f′′(y) = α2

fsf(y) which has the solution
f(y) = C1e

αfsy + C2e
−αfsy . The condition u′ = ∂Ψ/∂y = 0 at y = −∞ gives C2 = 0

in the region below the wake. Hence the exponential decay of streamwise velocity
fluctuations below the wake is given by u′1/u′2 = eαfs(y1−y2). Although derived for an
unbounded flow, this scaling also seems to apply to the potential flow region above the
boundary layer when the flow beneath the wake is bounded by the plate. The scaling
was confirmed experimentally by measuring the disturbance profile with the ribbon at
two heights but with the same vibration amplitude. When the lower profile is scaled
by this exponential relationship, it overlays the upper profile in the boundary-layer
region (figure 9b). Although the amplitude of the boundary-layer edge forcing is
related to the wake disturbance amplitude by this scaling, it is still advantageous to
use the edge forcing amplitude as the reference excitation amplitude as this removes
the need for a wake-height parameter in the receptivity analysis.

3.3. Boundary-layer instabilities

When roughness was added to the plate surface at branch I, the boundary layer
did become receptive to the convected disturbance. The receptivity increased with
the number of roughness elements on the plate, and with a distributed array of
roughness elements a large response was obtained. The mode shape of the instability
wave excited by the interaction between the surface roughness and the convected
disturbance was determined by a vector subtraction of the profile measured above
a smooth plate from a similarly measured profile with roughness on the plate. The
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Figure 11. (a) Streamwise growth of the measured TS wave (◦), compared with linear stability
theory (—). (b) Measured phase of the TS wave (◦), and of the wake disturbance (�), plotted against
streamwise distance. F = 50, u′fs/U∞ = 0.3 %. Single roughness element, 25.4 mm wide, 100 µm
thick, at Rr = 613.

profile so obtained is shown in figure 10. The r.m.s. amplitude profile is normalized
by the maximum amplitude and the phase profile is referenced to the phase at the
edge of the boundary layer. The measured mode shapes agree with the shape of the
TS eigenvector calculated using the eMalik quasi-parallel stability code (Malik 1989),
confirming that the measured instability is a TS wave.

The growth rate and phase speed of the TS waves, shown in figure 11, also closely
match the predictions of linear stability theory. The experimental amplitude plotted
here is the amplitude measured at a height corresponding to the maximum of the
calculated eigenvector at each Reynolds number. At R = 625 this maximum occurs
in the boundary layer at U/U∞ = 0.25 and it moves outward to U/U∞ = 0.4 at
R = 920. Again, the r.m.s. amplitudes shown result from the vector subtraction of the
no-roughness measurement from the roughness measurement. Prior to this subtraction,
the roughness amplitudes showed a marked oscillation with streamwise distance due to
interference between the TS waves and the convected disturbance. Even after the free-
stream disturbance has been subtracted, there is still some oscillation in the amplitudes
measured at Reynolds numbers less than 750. This is a consequence of the small wave
amplitudes at locations close to the roughness, and it shows why measurements were
made at downstream locations where the waves had been amplified. The TS phase
speed of 0.326U∞ agrees well with the theoretical value which varies from 0.32 to 0.33
between the two branches of the neutral stability curve. The measured speed of the
convected disturbance was within 1 % of the free-stream velocity. This was consistent
with the wake deficit, which earlier measurements showed to be less than 2 % of the
free-stream velocity. Hence, the reduction in receptivity calculated by Kerschen (1991)
for decreased convection speeds was avoided in this experimental set-up.

The mode shape, phase speed and growth rate of the measured instability indicate
that it is behaving in the manner predicted by linear stability theory and therefore it
should be reasonable to use linear stability theory to calculate initial TS amplitudes
from the larger, measurable amplitudes at downstream locations. The last question to
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F = 50. Array of seven roughness elements, each 25.4 mm wide, 50 µm thick, spaced 50.8 mm apart
about RI = 613.

be answered regarding the validity of the experiment is whether the instability wave
was excited solely by the convected disturbance, or whether there were contributions
from acoustic and vibration sources. To differentiate between excitation sources, TS
wave amplitudes were measured with the vibrating ribbon positioned at two heights.
An accelerometer on the ribbon mounting block was used as a reference to ensure
that the ribbon’s vibration amplitude remained constant. The two measured profiles
are shown in figure 12. When the profile measured with the ribbon in the lower
position is scaled by the ratio of the fluctuation levels at the edge of the boundary
layer, the resulting boundary-layer profile matches the boundary-layer profile excited
by the higher wake. As the ribbon’s vibration amplitude was constant, the acoustic
and vibration fields were unchanged between the two measurements. Therefore, the
fact that the TS amplitude scales with the forcing at the edge of the boundary layer
demonstrates that receptivity to convected vorticity was the dominant mechanism
generating the measured TS waves.

3.4. Receptivity to convected disturbances

A series of tests was then performed to establish the range of validity of the receptivity
expression (1.1). For each configuration, measurements of the maximum TS amplitude
in the boundary layer were made at a number of streamwise locations from R = 800
to R = 900. At each location, the measurement with roughness on the plate was
followed by a no-roughness measurement. TS amplitudes were determined from a
vector subtraction of the no-roughness amplitude from the roughness amplitude.
Estimates of the initial r.m.s. wave amplitude at the roughness location, u′tsr , were
then determined from the TS amplitudes measured downstream, u′ts, using N-factors
obtained from linear stability calculations using the eMalik code. Each N-factor was
calculated by integrating the wave growth rate, αi, between the Reynolds number of
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the roughness location, Rr , and the Reynolds number of the measurement location, R.

u′tsr = u′tse
−N, N =

∫ R

Rr

−2αidR. (3.1)

In some cases the roughness was positioned forward of branch I and so both positive
and negative growth rates were included in the integration. The degree to which
the initial amplitude estimates from different downstream locations collapse onto a
single point is a measure of the applicability of the theoretical growth rates to the
experimental boundary layer and of the repeatability of the measurements.

Results of a test of the linearity of the boundary-layer response with varying free-
stream disturbance amplitudes are shown in figure 13. The disturbance amplitude, u′fs,
was always set at the edge of the boundary layer, η = 8, at a fixed streamwise location,
R = 630. The boundary-layer response was found to be linear for forcing amplitudes
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up to 1 % of the free-stream velocity. In figure 14 the results of a test of linearity
with roughness height show that the response remained linear for non-dimensional
roughness heights h = h∗/δr of less than 0.2 (δr = (νx/U∞)1/2), which corresponds
to an asymptotically scaled roughness height h∗/(xε5) of 1 (ε = R−1/4). This result is
similar to that found for acoustic receptivity by Saric et al. (1991), and by Zhou et al.
(1994), and agrees with the acoustic receptivity calculations of Bodonyi (1990) who
predicted a nonlinear response when the roughness exceeds the height of the viscous
lower deck of triple-deck theory, h∗/(xε5) > 1.

The final test of (1.1) was to verify that the boundary-layer response varied with
the spatial Fourier transform of the surface geometry evaluated at a wavenumber
equal to the difference between the wavenumber of the TS wave and the wavenumber
of the free-stream disturbance. The forward transform is defined as

F(α) =

∫ ∞
−∞
H(x)e−iαxdx, (3.2)

where H(x) describes the surface geometry. For a single rectangular roughness element
of width d and height h, the transform, evaluated at (αts − αfs), is given by

F(αts − αfs) =
2h

αts − αfs sin

(
d(αts − αfs)

2

)
. (3.3)

For constant αts and αfs this function is maximum for a strip of width d = π/(αts−αfs)
(half the wavelength corresponding to the resonant wavenumber αw = (αts − αfs)).
Measurements of the TS amplitude excited by roughness elements of various widths
positioned at the branch I location are plotted in figure 15(a), where d has been
normalized by the resonant wavelength 2π/(αts− αfs). The function sin(d(αts− αfs)/2)
is also included in the figure and a reasonable correlation between this function and
the experimental data is apparent. Clearly, the generation of TS waves is tuned to
the resonant wavenumber. In figure 15(b) the same data are used to illustrate the
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Figure 16. (a) TS amplitude variation with roughness Reynolds number: u′tsr , downstream ampli-
tudes extrapolated back to the roughness location (◦); u′tsI , downstream amplitudes extrapolated
back to the branch I location (�). (b) Variation of the receptivity efficiency function with roughness
Reynolds number: measurements (◦), finite Reynolds number calculations (—, Choudhari 1996),
asymptotic theory (- - -, Kerschen 1991). Efficiency function is based on u′tsr . F = 50, u′fs/U∞ = 0.3 %.
Single roughness element, 25.4 mm wide, 100 µm thick.

linear variation of the boundary-layer response with the Fourier transform of the
roughness geometry. The Fourier transform was evaluated using values of αts from
linear stability calculations.

These tests verified that the formulation of (1.1) was valid for free-stream forcing
amplitudes less than 1 % and for roughness heights less than 0.2δr . Within this linear
regime, (1.1) was used to reduce the experimental data to an efficiency function. The
dependence of this function on F and Rr is presented in the next section.

3.5. Receptivity at local roughness

The variation of local receptivity with roughness location was determined by repeating
the measurement technique described in the previous section with a single roughness
element positioned at a number of streamwise locations. The results, plotted in
figure 16(a), show that the amplitude of the TS wave excited at the roughness
decreases as the roughness is moved downstream. The effects of wave growth may
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be included by using an effective branch I amplitude, u′tsI , calculated by substituting
the branch I Reynolds number, RI , for the roughness Reynolds number, Rr , in the
integration in (3.1). The effective branch I amplitudes are also plotted in figure 16(a).
The large upstream amplitudes decay before reaching branch I and as a result, the
effective branch I amplitude is maximum for a roughness location of Rr = 550 which
is just upstream of the branch I location, RI = 613. This result is in agreement with
results of the finite Reynolds number calculation of Crouch (1994a), who calculated
a receptivity maximum well upstream of branch I but noted that when the growth of
the eigenmode was included, the maximum moved back to a location just upstream
of branch I. These experimental results also confirm the observation by a number of
authors that roughness close to branch I will be the most critical in determining the
downstream TS wave amplitudes.

Equations (1.1) and (3.3) were then used to determine values of the receptivity
efficiency function from the TS amplitudes at each roughness location. This function,
shown in figure 16(b), decreases with increasing roughness Reynolds number although
the decay rate is not as great as that of the TS amplitudes in figure 16(a). This is
primarily due to the magnitude of the Fourier transform of the roughness, which
decreases as the TS wavenumber increases in the downstream direction. When the
data are plotted in the form of the efficiency function, the effect of the Fourier
transform is removed and the variation with roughness Reynolds number is reduced.

Results of calculations by Choudhari of the local receptivity of a Blasius bound-
ary layer to a two-dimensional gust are included in figure 16(b). He reworked the
calculations reported in Choudhari (1996) to match the experimental parameters.
Disturbance profiles obtained from a numerical solution of the unsteady boundary
layer equations (figure 8), were used as the input to his Orr–Sommerfeld-based finite
Reynolds number receptivity calculation. The calculated efficiency function is 30 %
lower than the experimental result but both exhibit a similar trend with roughness
Reynolds number. The asymptotic efficiency function calculated by Kerschen (1991)
is also included in the figure. The data, taken from Kerschen’s figure 1, were scaled
by U ′b

2
ε/(2π)1/2 where U ′b = 0.332 is the slope of the mean flow close to the wall

and ε = R−1/4. The agreement between theoretical and experimental results is rea-
sonable considering the limitations of the theory and the extraordinary sensitivity of
the Blasius boundary layer’s stability characteristics. The comparison with theory is
discussed further in the next section.

In figure 17, the results of a test investigating the variation of receptivity with
forcing frequency are presented. For this test the roughness strip was fixed at R = 620
while the frequency of the convected disturbance was varied. The TS amplitude
excited at the roughness decreases with increasing frequency. During this test, branch
I, which is dependent on the forcing frequency, moves forward from R = 700 for
F = 35 to R = 490 for F = 75. As a result of this movement, u′tsI is a maximum at
F = 45 after which it decays at a faster rate than u′tsr . Again most of the variation
in the TS amplitude can be attributed to the decreasing magnitude of the Fourier
transform as the relevant wavenumber (αts − αfs) increases with increasing frequency.
When the data are plotted in the form of the efficiency function (figure 17b), there is
only a slight decrease over the frequency range investigated.

3.6. Receptivity at distributed roughness

Measurements of the receptivity at distributed roughness were made by adding
roughness elements to the plate surface, distributed evenly about branch I and spaced
to give the resonant wavenumber. At this wavenumber the TS waves generated at each
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Figure 17. (a) TS amplitude variation with forcing frequency: u′tsr , downstream amplitudes ex-
trapolated back to the roughness location (◦); u′tsI , downstream amplitudes extrapolated back to
branch I (�). (b) Variation of the receptivity efficiency function with frequency: measurements (◦),
finite Reynolds number calculations (—, Choudhari 1996), asymptotic theory (- - -, Kerschen 1991).
Efficiency function is based on u′tsr . u′fs/U∞ = 0.3 %. Single roughness element, 25.4 mm wide,
100 µm thick located at R = 620.

roughness element will add constructively. The increase in receptivity with increasing
numbers of elements on the plate is shown in figure 18. The TS amplitude plotted
here is calculated by assuming all wave generation occurs at branch I. The increase
in receptivity is initially linear but starts to approach a limit with seven roughness
elements on the plate. The increase is similar to that which would be obtained by
summing the individual contributions of each roughness element. As the individual
contributions decrease for roughness elements away from branch I, the receptivity to
distributed roughness approaches an upper limit.

The variation in distributed receptivity with frequency is shown in figure 19. Un-
like the single-roughness case shown earlier in figure 17(a), the effective branch I
amplitudes for distributed roughness are highly tuned to the resonant frequency. This
is due to interference between waves generated at successive roughness elements for
TS wavenumbers away from the resonant wavenumber. The tuning effect may also
be explained by considering the local geometry in the vicinity of branch I. As the
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Figure 19. TS amplitude variation with forcing frequency. Downstream amplitude measurements
extrapolated back to branch I. Array of nine roughness elements, 100 µm thick, 25.4 mm wide,
spaced 50.8 mm apart about RI = 613. u′fs/U∞ = 0.3 %.

number of roughness elements is increased, the value of the Fourier transform at the
resonant wall wavenumber, αwall = π/d = αts − αfs, increases linearly and the peak in
the transform at this wavenumber becomes increasingly narrow. The local analysis
is only valid in the branch I region as the decay of waves forward of this region,
and the reduced receptivity and reduced growth of waves aft of this region, reduces
their contribution to the effective branch I amplitude. The results suggest that dis-
tributed receptivity could be calculated from the complex sum of a succession of local
calculations. This approach was developed in detail by Choudhari & Streett (1994).

4. Discussion and comparison with theory
A quantitative comparison of the experimental results with those of theory re-

quires that the boundary-layer signature of the free-stream disturbance used in the
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calculation matches that measured in the experiment (figure 8). The convected array
of vortices introduced by Rogler & Reshotko (1975) and used by Crouch (1994a, b)
and Lin et al. (1995) in their receptivity calculations has quite a different signature
in the boundary layer than that measured in this experiment. The array of vortices
produces a much higher fluctuation gradient close to the edge of the boundary layer
(see Crouch 1994b, figure 2). As this is the region where the vortical receptivity mech-
anism is active, the results of the calculations are not comparable to the results of the
experimental measurements reported here. In addition, Crouch’s results are normal-
ized by the vortex strength and so his efficiency function is dependent on the height
of the vortex above the plate. The experimental efficiency function presented here is
normalized by the fluctuation amplitude at the edge of the boundary layer and is inde-
pendent of the wake height. Zavol’skii et al. (1983) and Choudhari (1994) assumed a
Gaussian profile for the wake fluctuations. Such a profile does not fit the exponential
scaling of the disturbance in the potential flow region outside the wake. As a result,
the receptivity variation with wake height in these calculations is more extreme than
that measured in this experiment. However, the convected gust disturbance calculated
by Choudhari (1996) is similar to that measured in this experiment and a quantitative
comparison between these calculations and the experimental results is possible.

The results of Choudhari’s calculations were included in figures 16(b) and 17(b).
The calculated efficiency function is 30 % lower than the experimentally derived
function but both exhibit the same trends with frequency and Reynolds number. The
discrepancy between the theoretical and experimental results is considered to be small
when the extreme sensitivity of the Blasius boundary layer’s stability characteristics
to the slightest pressure gradient is taken into account. As Blasius N-factors were
used to estimate initial wave amplitudes from amplitudes measured downstream,
any deviation from the Blasius profile would have had a large effect on the initial
amplitude estimates. To illustrate this sensitivity, the experimental efficiency function
was recalculated from the measured wave amplitudes, using stability results from a
number of Falkner–Skan profiles. An exact match with the theory was obtained when
N-factors for a Falkner–Skan profile with a β of − 0.0075 were used to reduce the data.
This corresponds to flow past an expansion angle of 0.02◦. The deviation of this profile
from the Blasius profile is very small and the shape factor of 2.61 is only marginally
higher than the Blasius value of 2.59. Such a profile is within the uncertainty of the
experiment. This exercise demonstrates the extreme sensitivity of the experimental
technique and shows that despite the care taken to establish a zero pressure gradient
boundary layer, the uncertainty in the experimental efficiency function could be of
the order of the discrepancy between the theoretical and experimental results.

The asymptotic efficiency function calculated by Kerschen (1991) was also included
in figures 16(b) and 17(b). A rigorous comparison with the results of asymptotic
theory would require that both the efficiency function and the Fourier transform
be evaluated using first-order asymptotic results (Choudhari & Streett 1992). How-
ever, this would introduce an error in the transform, as the asymptotic estimate of
the TS wavenumber significantly underestimates the experimentally validated Orr–
Sommerfeld value. In addition, at first order the transform is evaluated at αts instead
of αts − αfs. These errors are not included in the efficiency function comparisons
reported here because the Fourier transform used in determining the experimental
efficiency function was evaluated using TS wavenumbers from an Orr–Sommerfeld
solution. Even so, the asymptotic estimate of the efficiency function is about 50 %
less than the finite Reynolds number estimate and has little variation with frequency
or Reynolds number. The asymptotic scaling restricts the validity of the theory to the
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branch I region at high Reynolds numbers and so the agreement would be expected
to improve at higher Reynolds numbers.

The distributed receptivity results may be qualitatively compared with the results
of calculations of Crouch (1994a). He calculated a factor of 10 increase in the
receptivity at a wavy wall compared with that at local roughness near branch I. He
also calculated the increased tuning of TS wave amplitudes about the resonant wall
wavenumber. His results agree with the order of magnitude increase in receptivity
measured in this experiment and the resonant response of the boundary layer over
distributed roughness. As the form of his convected disturbance differed from that
measured in the experiment, a quantitative comparison with his calculations is not
possible.

A comparison may also be made with experimental and theoretical results for
acoustic receptivity. The value of the efficiency function calculated by Crouch (1992)
for acoustic receptivity at local roughness with a forcing frequency F = 56 and with
the roughness at branch I was 0.06. A similar value was obtained by Choudhari
& Streett (1992) whose calculations matched the experimental results of Wiegel &
Wlezien (1993). This value is 10 times the convected receptivity measured in this
experiment. Crouch (1994a) calculated acoustic receptivity to be 20 times stronger
than vortical receptivity, but as his vortical receptivity is referenced to the strength
of the vortex, the results are dependent on the height of the vortex above the
wall. Choudhari (1994) estimated the acoustic receptivity to be 100 times stronger
than the receptivity to a compact Gaussian wake, but again the use of the wake
amplitude as the reference makes the results dependent on the height of the wake
above the wall. An acoustic disturbance is not localized in the free stream and so
the location of the reference amplitude is not critical. However, for localized vortical
disturbances, the location of the reference amplitude directly affects the receptivity
value. Therefore, for a valid comparison between acoustic disturbances and localized
vortical disturbances, the amplitude of the streamwise velocity fluctuations at the
edge of the boundary layer should be used as the reference amplitude for both
disturbances. This choice makes the vortical efficiency function independent of the
height of the disturbance above the surface. With this choice of reference, local
acoustic receptivity is 10 times greater than local vortical receptivity. Although the
receptivity mechanism for acoustic disturbances is stronger than the mechanism for
convected disturbances, the relative importance of each mechanism to a particular
flow will depend on the relative strength of the acoustic or vortical disturbances in the
free stream. It should be noted that although a two-dimensional harmonic acoustic
disturbance is a reasonable representation of free-stream sound, a two-dimensional
harmonic convected disturbance is a very simplified model of the vorticity in free-
stream turbulence. Hence, the implications of these results to more complicated flow
fields must be qualified by the applicability of the convected-vorticity model.

5. Conclusions
Evidence which tends to validate the linear theory describing the local receptivity

of a boundary layer to convected disturbances at surface roughness has been obtained
in a series of experiments on a flat-plate Blasius boundary layer. The wake from a
vibrating ribbon, positioned well upstream of the plate leading edge, provided an
effective convected disturbance for forcing the boundary layer. It was shown that this
free-stream disturbance could be defined in terms of the streamwise fluctuations at
the edge of the boundary layer, removing the need for a wake-height parameter in the
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receptivity analysis. The response of the boundary layer to the convected disturbance
was confined to the outer portion of the layer with streamwise fluctuations being
rapidly damped towards the wall. However, the outer-layer interaction between the
convected disturbance and the short-scale mean-flow distortion due to the roughness
was sufficient to excite measurable TS waves. It was demonstrated that receptivity to
convected disturbances was the dominant mechanism responsible for the generation
of these waves and that the measured mode shape, growth rate and phase speed of
the waves matched that of TS waves predicted by linear stability theory.

Tests were performed to determine the range of validity of linear assumptions
made in current receptivity theories. Linear variation with forcing amplitude was
demonstrated for boundary-layer edge amplitudes up to 1 % of the free-stream
velocity. The TS amplitude was also shown to vary linearly with roughness height
until the roughness exceeded 0.2δr . Finally, the influence of roughness geometry was
shown to be well modelled by the spatial Fourier transform of the roughness evaluated
at a wavenumber equal to the difference between the wavenumber of the TS wave
and the wavenumber of the free-stream disturbance. Variations in the value of this
transform due to variations in either of these two wavenumbers explained much of
the variation observed in the measured TS amplitudes.

The receptivity results were then expressed in the form of an efficiency function,
Λ(F, R), which is independent of the effects of the free-stream disturbance amplitude,
the roughness height and the roughness geometry. This function was shown to
decrease monotonically with F and R, although the variation was slight over the
ranges investigated. The experimental results were compared with results of the
Orr–Sommerfeld-based finite Reynolds number receptivity calculations of Choudhari
(1996) and with results of the asymptotic theory of Kerschen (1991). Better agreement
was obtained with the finite Reynolds number results as would be expected since the
asymptotic scalings are only valid at large Reynolds numbers. The finite Reynolds
number results were approximately 30 % lower than the experimental data but showed
equivalent trends with frequency and Reynolds number. The agreement between
theory and experiment is reasonable considering the limitations of the theory and the
extreme sensitivity of the stability characteristics of the Blasius boundary layer to the
slightest pressure gradient.

The measured TS amplitudes with distributed roughness on the plate were highly
tuned to the resonant frequency where the TS wavenumber was equal to the sum
of the free stream and wall wavenumbers. This result, plus the linear increase in
TS amplitude with increasing number of roughness elements, can be explained in
terms of the Fourier transform of the distributed roughness which exhibits the same
characteristics. The data agree qualitatively with results of finite Reynolds number
calculations by Crouch (1992) of the receptivity of a boundary layer over a wavy
wall. As the form of his convected disturbance differed from that measured in this
experiment, a quantitative comparison with his calculations was not possible. The
data also support the observation by Choudhari & Streett (1994) that the total
distributed receptivity could be calculated from the complex sum of a succession of
local calculations.

A comparison with previous acoustic receptivity results indicates that the vortical
receptivity efficiency function based on the streamwise forcing at the boundary-layer
edge is a factor of 10 less than the acoustic receptivity efficiency function. The choice
of the amplitude at the edge of the boundary layer as the disturbance amplitude
makes this factor somewhat smaller than that reported by previous investigators.
Although the acoustic receptivity mechanism is stronger, the relative importance of
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each mechanism in a particular flow will be dependent on the composition of the
free-stream disturbance field. This comparison should be qualified by the fact that
although the acoustic receptivity function is based on an accurate model of free-
stream sound, the vortical receptivity function is based on a simplified model of
free-stream turbulence.

The measurements reported here have validated many aspects of the theory
for receptivity to single-frequency two-dimensional convected disturbances at two-
dimensional roughness. The work has been extended to broad-band two-dimensional
convected disturbances by Dietz (1998). It is a step towards determining the receptivity
to free-stream turbulence with its broad-band three-dimensional spectrum.

The experiment was aided by the work and advice of Dr M. Choudhari who also
provided the finite Reynolds number results reported in the paper. The advice and
support of Dr S. Davis is also gratefully acknowledged. In addition, thanks are due
to Dr M. Malik for the use of his stability code and to Professor E. Kerschen and Dr
J. Crouch for several fruitful discussions. This work was performed while the author
held a National Research Council–Ames Research Associateship.
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